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Abstract. In this work, we propose a 3D convolutional neural network (CNN) 
for positron emission tomography (PET) image enhancement as an application 
of the artificial intelligence (AI) in the area of health. Our proposed network 
manages to increase the number of counts in the PET sinograms, thus, positively 
influencing the final quality of the reconstructed image. The enhanced sinogram, 
obtained by the network, is reconstructed using the ordered subset expectation 
maximization (OSEM) algorithm. The results show that the proposed network is 
able to increase the PSNR by 6% on average and the contrast almost twice. 

Keywords: Positron emission tomography, convolutional neural network, 
sinogram, image enhancement. 

1 Introduction 

Industry 4.0 is changing the way medical devices are produced and delivered. Artificial 
intelligence (AI) has become a key element of this industry and it is knocking down 
barriers and forcing to assess the way the traditional work is done. In the medical area, 
the AI trends and solutions are transforming the medical imaging field to improve 
the diagnosis process [1]. 

Medical imaging is the set of techniques used to inspect the human body, with the 
objective of diagnosing, monitoring, or treating medical conditions [2]. Positron 
emission tomography (PET) is a technique to acquire images representative of the 
metabolic activity of the body. At the beginning of the PET scan, the patient is injected 
with a small dose of radioactive material called radiotracer. 

For a cancer study, the radiotracer used is fluorodeoxyglucose (F18). This substance 
decays by a neutrino and a positron (beta+) with a lifetime of about 109 minutes. Each 
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positron annihilates with an electron, producing two photons of high energy, traveling 
in opposite directions. This is known as coincidence or event. Each event is counted 
upon reaching the scanner's detectors within a time window. The point of annihilation 
is ideally located on a straight line connecting a pair of detectors. 

This line is known as the line of response (LOR) [3]. Reconstruction can be 
performed using filtered back projection methods or iterative methods. In a PET study, 
the time is reduced, not all the events are counted as true coincidences, but they can 
also be random or scattered coincidences. In the last two cases, the coincidence detected 
by each of the detectors comes from different LORs. 

Randoms are one of the main sources of degradation of the image, since they 
introduce noise, making difficult the quantification. Also, the acquisition time is 
reduced, resulting in noisy and low resolution images [2, 3]. The Poisson noise affects 
the image quality negatively, influencing the detectability of lesions and the medical 
diagnoses. It is the current interest of the PET community to find methods to recover 
and preserve the important information in the images. In this paper, we present an 
application of the AI in the health area. 

Our proposal consists of a three-dimensional (3D) CNN to improve the PET 
sinogram, demonstrating that it is feasible and important to retrieve information 
between slices, but also intra slices. The paper is organized as follows. In section 2, the 
recent related works are presented. Section 3 presents the main concepts related to the 
topic and the proposed method. In section 4, we show the results of the experimentation 
and, finally in Section 5, conclusions are presented. 

2 Related Work 

A set of techniques have been proposed to solve the problem of poor quality in PET 
images. Conventional approaches include processing algorithms [4, 5], anatomically 
guided [6], and magnetic resonance imaging (MRI) guided algorithms with partial 
volume correction [7]. Although these methods try to minimize noise, loss of spatial 
resolution is still observed. The algorithms of artificial intelligence have been included 

  

(a) (b) 

Fig. 1. Representation of (a) two LORs where two and one events have happened respectively 
and (b) resulting 2D sinogram with the events stored. 
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in the area of medical image reconstruction and enhancement. Most of the works focus 
on the reconstructed images. 

They propose to use trained networks with pairs of low resolution and high 
resolution images [8,9]. The high-resolution images are obtained from an acquisition 
with a modern ultra-high definition scanner, and degraded to obtain the low-resolution 
version. Other authors incorporate into the network training, anatomical information 
obtained from a computed tomography (CT) or MRI scanner [10, 11], arguing that this 
information is useful for estimating a more robust model and higher quality images. 

Recent studies have focused their efforts on improving the sinogram instead of the 
reconstructed image. For example, in [12], the authors use Monte Carlo simulations 
and CNN to recover improved 2D sinograms from the low-resolution originals 
produced by simulated tomographs with large and small crystals. 

2.1 The Importance of the Third Dimension 

With the increase in computing power, some researchers have explored the possibility 
of addressing the problem of the low resolution of PET images in a three-dimensional 
way using deep learning systems. 

For example, in [13], a 3D variant of the U-Net network is proposed to improve 
reconstructed images, reducing noise in PET images of the brain and chest. We think 
that in the domain of the sinogram is possible to obtain advantages if the sinogram is 
processed as a volume instead of sequential two-dimensional (2D) slices. 

Despite the more common view of sinograms, as 2D slices, however, in PET, the 
acquired sinogram are volumes. Sinograms are three-dimensional structures, where not 
only the intra slice information (x, y, axes) is important but also the inter slices 
information (z-axis). In this work, we propose a 3D CNN to improve the quality of the 
acquired 3D sinograms. 

3 Materials and Methods 

This section presents the main methods and concepts related to PET tomography. 
Terms related to CNNs are also explained, as well as the 3D CNN proposed in this 
work is detailed. 

3.1 PET Sinograms 

A 2D sinogram is a matrix whose axes correspond to the angles (α) versus the 
orthogonal distances (S) of the orthogonal lines from the center of the tomograph to the 
LOR. Figure 1(b) shows a 2D sinogram with two events from the LORs shown in 
Figure 1(a). 

In this case, on one of the LORs, at an angle (α1), occurred two events and on the 
LOR at an angle (α2) occurred one event. The number of possible angles is determined 
by the number of crystals per ring and the number of possible distances. 

Also, this number depends on the number of crystals, and the transaxial field of view 
of the scanner [2,3]. Figure 2(a) shows a scanner with the arrow pointing to the axial 
axis. Figure 2(b) shows the acquisition of 2D sinograms. In this case, the events whose 
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LORs occur in the same axial plane of each detector ring are recorded in different 2D 
slices. Figure 2(c) shows that the events detected by crystals, from different rings, are 
stored in volumetric files, also called 3D sinograms. 

This implies a substantial increase in the size and in the reconstruction time. The 
quality of reconstructed images is higher, due to the greater amount of information 
available. All the information detected in a 3D acquisition is stored in a 3D sinogram, 
where each corresponds to a 2D sinogram. Figures 2(d) and 2(e) shows the 
representation of 2D and 3D sinograms respectively. 

3.2 PET Ordered Subset Expectation Maximization Algorithm 

The maximum likelihood expectation-maximization algorithm (MLEM) was 
introduced in the field of image reconstruction in [14]. A variant of the MLEM method 
is the ordered subset expectation-maximization algorithm (OSEM) [15]. This method 
groups the PET scanner detectors into subsets to perform the processing of each subset 
in iterations, doing one subset at a time. OSEM reduces the reconstruction time relative 
to MLEM. 

3.3  Scanner MicroPET FOCUS 220 

We simulated the MicroPET FOCUS 220 preclinical scanner using the Gamos software 
[16] to perform the experiments. The scanner consists of four detector rings: each ring 
is made up of 42 detector blocks. Each detector block is composed of a matrix of 12 × 
12 LSO crystals with dimensions of 1.5 mm × 1.5 mm × 10.0 mm. Its axial field of 
view is 7.6 cm and its transaxial field of view is 19 cm [17]. So that, one can acquire a 
3D sinogram of size 252 × 287 × 2304. 

3.4 Convolutional Filters 

The convolution filters are two-dimensional or three-dimensional matrices to perform 
the convolution operation on the image to extract different characteristics. Typically, 
they are of size 3 × 3 or 5 × 5. The filter moves through the image from left to right, 
and from top to bottom, and in the case of 3D, from front to back, advancing a certain 
number of steps known as a stride. 

     
(a) (b) (c) (d) (e) 

Fig. 2. Events acquisition from (a) a tomograph, (b) acquisition of  2D sinograms  (one sinogram 
per ring detector), (c) acquisition of a 3D sinogram (only one volume), (d) 2D sinogram and (e) 
3D sinogram. 
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3.5 Convolutional Neural Networks 

A CNN is a deep learning algorithm that can incorporate an input image, assign 
importance (weights and learnable biases) to various aspects or objects in the image 
and differentiate one from another, among other activities. 

The preprocessing required in a CNN is much less compared to other classification 
algorithms. While in primitive methods, the filters are designed by hand, with enough 
training, CNNs can learn these filters. 

Also, a CNN can capture spatial and temporal dependencies in an image through the 
application of filters.The architecture is better suited to the image data set due to the 
reduction in the number of parameters involved and the reuse of weights [18]. 

3.6 Deconvolution 

Deconvolution is the inverse operation of convolution. It is used to recover data 
degraded by a physical process modeled as a convolution. If the degraded signal and 

 

Fig. 3. Proposed 3D CNN. 

Table 1. Resulting hyperparameters after tuning the proposed 3D CNN. 

Parameter Value 
Loss function Mean Squared Error 

(MSE) 
Optimization algorithm Adam 
Learning rate 0.0003 
Batch size 128 
Epochs 200 
Size of filters in the input layer 9 × 9 × 9 
Size of filters in the mapping layer 3 × 3 × 3 
Size of filters in the transpose convolution layer 5 × 5 × 5 
Number of filters in the input layer 32 
Number of filters in the mapping layer size 16 
Number of filters in the transpose convolution layer 1 
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the system are known, it is possible to find the original signal by a deconvolution 
operation [19]. 

3.7 Dataset 

High counts (HC) and low counts (LC) sinograms are generated to train the network. 
Five phantoms were simulated for the generation of the sinograms, containing spheres 
with diameters ranging from 0.5mm to 5mm. The spheres are randomly distributed 
within the simulated phantoms, so that the sinograms obtained contain enough useful 

  
(a) (b) 

Fig. 4. Simulated phantom of dimensions (a) 5 mm, 10 mm and 20 mm in diameter and 6 cm in 
length and (b) 1 mm, 2 mm, and 5 mm in diameter and 6 cm in length. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Fig. 5. MIPs of the transversal view of the simulated phantom with three cylinders of 5 mm, 10 
mm and 20 mm in diameter. (a) LC (PSNR=26.33 dB, C=1.1680), (b) enhanced (PSNR=32.01 
dB, C=2.5014) and (c) ground truth phantoms. Middle slice from the 3D (d) LC sinogram, (e) 
recovered sinogram from the proposed 3D CNN and (f) ground truth sinogram. 
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information for training. The LC sinogram is generated with 10 million events, of which 
only effective PET events are, about 5%. 

One hundred million events were generated in the phantom to obtain the HC 
sinograms of which only 5% are true events. For network training, we extract 3D 
patches of size 32 × 32 × 32, selected randomly from the pairs of LC and HC sinograms. 
Our training set contains 15250 LC-HC patch pairs, while our validation set consists of 
5000 patch pairs. 

3.8 Proposed 3D CNN for PET Sinogram Enhancement 

Figure 3 shows the diagram of the 3D CNN proposed to improve low resolution 
sinograms. The network has three layers. The input layer extracts the characteristics of 
the low-resolution sinograms, the mapping layer performs the mapping between the 
low resolution and high-resolution features, and the third layer or transpose convolution 
(deconvolution) layer performs the final reconstruction. 

The input layer consists of 32 filters of size 9 × 9 × 9, with the ReLU [20]. The 
mapping layer has 16 filters of 3 × 3 × 3, with ReLU. The third layer has one filter of 
5 × 5 × 5, with a linear activation function. Table 1 shows the hyperparameters adjusted 
by using the grid search method for the proposed 3D CNN. The proposed network has 
three layers only. Therefore, it is feasible and more efficient to tune the 
hyperparameters by the grid search method [21, 22]. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Fig. 6. MIPs of the transversal view of the simulated phantom with three cylinders of 1 mm, 2 
mm and 5 mm in diameter. (a) LC (PSNR=25.12 dB, C=1.1521), (b) enhanced (PSNR=27.23 
dB, C=2.4072) and (c) ground truth phantoms. Middle slice from the 3D (d) LC sinogram, (e) 
recovered sinogram from the proposed 3D CNN and (f) ground truth sinogram. 
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4 Experiments 

In this section, we present the methodology of evaluation and discuss the experimental 
results. We simulated six rods of 1 mm, 2 mm, 5 mm, 10 mm and 20 mm using the 
scanner MicroPET FOCUS 220. To examine the performance, we utilized the metrics 
peak signal to noise ratio (PSNR) and contrast (C) according to [23]. 

In our case, contrast indicates the difference between the lesions and the background 
in the image. If the difference is large, the lesions are more distinguishable. 

4.1 Methodology of Evaluation 

The maximum intensity projection (MIP) of the transversal views was used to obtain 
the quantitative results. A series of case studies were tested to verify the efficiency of 
the proposed method. In each experiment, the original low quality phantom was 
simulated with 500 thousand events and its corresponding ground-truth with 10 million 
events. For the simulation of the test phantoms, the Gamos software [16] was used. The 
OSEM algorithm [15] was used for the reconstruction. 

4.2 Experimental Results 

Figure 4(a) shows a phantom with three cylinders of 5 mm, 10 mm, and 20 mm in 
diameter and 6 cm in length, respectively. Figure 4(b) shows a phantom with three 
cylinders of 1 mm, 2 mm, and 5 mm in diameter and 6 cm in length. Both phantoms 
filled with F18 were used to acquire 3D sinograms for testing. Figure 5 shows the MIPs 
of the reconstructed images with OSEM from three cylinders of 5 mm, 10 mm, and 20 
mm in diameter and their corresponding sinograms. 

Figure 6 shows the MIPs of the reconstructed images with OSEM from three 
cylinders of 1 mm, 2 mm, and 5 mm in diameter and their corresponding sinograms. 
The proposed network increases the number of counts and the contrast, which 
positively affects the visualization. For example, Figure 7 (a) shows the MIPs of Figure 
5. In this case, the proposed CNN recovers the 5mm rod. Figure 7 (b) shows the MIPs 
of Figure 6. In this case, the proposed CNN also recovers the 1mm rod. 

The results obtained in the experiments allow us to affirm that the proposed method 
applied to the PET sinograms, in three dimensions, permits to increase the contrast of 
the rods in the reconstructed images. 

A better definition of the limits between the area containing the radiotracer and the 
background area is achieved. Figures 5(a to c) and 6(a to c) visually show that when 
the LC sinograms are processed by our method, valuable information is recovered when 
reconstructed. 

For example, in Figure 6(b), it is possible to observe how the proposed method 
recovers the intermediate lesion of 2mm in diameter, when it was originally almost 
invisible Figure 6(a). Table 2 compares the PSNR and contrast after recovering the low 
count phantom and the enhanced phantom. Notice that our network results (bold values) 
increase the PSNR by 6% on average and the contrast almost twice. Figures 5(d to f) 
and 6(d to f) clearly shows how the proposed method manages to recover effective 
counts in the sinograms, while the LC sinograms (Figures 5(d) and 6(d)) contain little 
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information, after being processed by our method, useful information is recovered for 
reconstruction (Figures 5(e) and 6(e)). 

5 Conclusions 

In this article, we presented an application of the AI in the health area. A 3D CNN was 
proposed to enhance sinograms of PET images. 

Sinograms with a high number of counts and their corresponding sinograms with 
few counts were generated 32 × 32 ×32 patches were extracted from both pairs of 
sinograms to form the training sets. An analysis of the profiles obtained from the MIP 
of the reconstructed images is carried out. 

The results show that the proposed network can increase the number of counts in the 
sinogram, which positively influences the quality of the images. Our method 
demonstrates the importance of treating the sinogram as a three-dimensional structure 
to consider the intra-slice information. 

The main advantages are the improvement of the 3D sinograms and the 3D CNN 
architecture with three layers only. However, the main drawback is that the method 
needs to be trained first, so that it is computationally expensive and time-consuming. 
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Fig. 7. Horizontal profiles of the (a) Figure 5 for the MIP of the phantom of dimensions 5 mm, 
10 mm, and 20 mm in diameter and (b) Figure 6 for the MIP of the phantom of dimensions 1 
mm, 2 mm, and 5 mm in diameter. 

Table 2. Summary of results. 

 LC phantom Enhanced phantom 

Case study 1 
PSNR 26.33 dB 32.01 dB 

Contrast 1.1680 2.5014 

Case study 2 
PSNR 25.12 dB 27.23 dB 

Contrast 1.1521 2.4072 
Note: Bold values indicate the best results. 
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